Separating convex sets in the plane
نویسندگان
چکیده
منابع مشابه
A convex combinatorial property of compact sets in the plane and its roots in lattice theory
K. Adaricheva and M. Bolat have recently proved that if $,mathcal U_0$ and $,mathcal U_1$ are circles in a triangle with vertices $A_0,A_1,A_2$, then there exist $jin {0,1,2}$ and $kin{0,1}$ such that $,mathcal U_{1-k}$ is included in the convex hull of $,mathcal U_kcup({A_0,A_1, A_2}setminus{A_j})$. One could say disks instead of circles.Here we prove the existence of such a $j$ and $k$ ...
متن کاملConvex Hulls of Sets in the Plane
The convex hull of a set of points is the smallest convex set containing the points. The convex hull is a fundamental concept in mathematics and computational geometry. Other problems can be reduced to finding the convex hull – for example, halfspace intersection, Delaunay triangulation, Voronoi diagram, etc. An algorithm known as Graham scan [6] achieves an O(n log n) running time. This algori...
متن کاملThe combinatorial encoding of disjoint convex sets in the plane
We introduce a new combinatorial object, the double-permutation sequence, and use it to encode a family of mutually disjoint compact convex sets in the plane in a way that captures many of its combinatorial properties. We use this encoding to give a new proof of the Edelsbrunner-Sharir theorem that a collection of n compact convex sets in the plane cannot be met by straight lines in more than 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1992
ISSN: 0179-5376,1432-0444
DOI: 10.1007/bf02187835